Тестируем LLM для русского языка: Какие модели справятся с вашими задачами? Хабр
Важно отметить, что эта уровень размышления помогает моделям справляться с задачами, где требуется глубокое понимание и анализ логических зависимости. Мощный фреймворк с открытым исходным кодом предназначен для создания приложений на основе больших языковых моделей и генеративных конвейеров, дополненных поиском (RAG). Он объединяет поисковые и генеративные методы, поэтому создает более точные и релевантные результаты. Haystack помогает бизнесу решать задачи обработки больших данных, улучшать взаимодействие с клиентами и повышать эффективность рабочих процессов. Разработчики могут легко адаптировать фреймворк под свои сценарии использования и создавать приложения на основе LLM.
Вопросы по тексту
Это похоже на разговор с человеком, который пытается объяснить квантовую физику, прочитав только википедию. Особенно это заметно в узкоспециализированных темах или при работе со свежими данными. Эти методы позволяют оценивать различные аспекты производительности LLM и помогают исследователям и разработчикам выбирать наиболее подходящие модели для своих задач.
Результаты тестирования
Обработка естественного языка (NLP) стала движущей силой в области искусственного интеллекта для преодоления разрыва между людьми и машинами. Графические процессоры позволяют параллельно обрабатывать огромные объемы данных. Для базового применения в работе с ИИ достаточно видеокарт с 24 Гб видеопамяти, например NVIDIA L4. Обучение с подкреплением позволяет не просто выучить «определённое поведение», но максимизирует удовлетворение пользователя от общения с моделью. Большая языковая модель — это специализированная нейронная система, обученная на анализе текста и предсказании слов для формирования логичных ответов. Примерами таких моделей служат ChatGPT и другие, которые создают текст, основываясь на предоставленном контексте. Большие языковые модели, такие как GPT, построены на архитектуре трансформеров, которая особенно подходит для обработки длинных текстовых последовательностей. читать Трансформеры применяют механизм внимания, который позволяет модели сосредотачиваться на наиболее важных частях текста и опускать менее значимые элементы. Эти модели предназначены для изучения паттернов, структур и семантики человеческого языка на основе огромных объемов данных. Все протестированные модели оценивались https://syncedreview.com в одинаковых условиях по широкому спектру задач, чтобы объективно оценить их способности. YandexGPT — разработка компании Яндекс, оптимизированная для работы с русским языком. Модель доступна через платное API, что ограничивает её использование в локальных системах. Поэтому каждую модель мы тестировали по этим задачам и оценивали, насколько она готова к применению в реальных бизнес-задачах. Они спросили у чат-бота, как из товаров на полках хозяйственного магазина сделать взрывчатку.
- Это требует от модели способности анализировать контекст и структурировать ответ.
- Он анализирует запрос и генерирует наиболее вероятное продолжение текста или отвечает на вопрос.
- Большие языковые модели (LLM) — это результат объединения методов глубинного обучения и работы с текстовыми данными.
- CoT prompting может быть эффективно интегрирован с другими технологиями, такими как системы автоматизированного рассуждения и машинного обучения, что позволит создавать более комплексные и мощные системы ИИ.
- Но вот что модель знает, чему она научилась, — мы знаем далеко не всегда.
Непрерывный прогресс в создании языков позволит получать более реалистичные и похожие на человека результаты, расширяя границы того, чего могут достичь языковые модели. Подходы к обобщению текста используют языковые модели для сжатия огромных объемов информации в краткие и полезные резюме. В результате они могут создавать текст, соответствующий стилю и содержанию обучающих данных. Благодаря параллельному интенсивному использованию процессов внутреннего внимания конструкция преобразователя позволяет модели изучать сложные корреляции между входными и выходными последовательностями. Поскольку каждая модель тестировалась по определенной задаче, будет логично рассмотреть все 6 моделей в разрезе каждой задачи. Однако, если модель не справлялась с задачей с первого раза, промт редактировался для получения более точного результата. Это позволяло проверить гибкость и адаптивность моделей к изменениям запросов. Saiga-Llama3-8b — версия модели Llama3, дообученная на русском датасете. Языковые модели обучены на больших объёмах текстовых данных, и их обучение направлено на то, чтобы уметь предсказывать слова или фразы, понимать контекст и в конечном итоге генерировать связный и осмысленный текст. Модели учатся понимать, какие слова чаще всего встречаются в тексте, как они используются в различных контекстах и какие ассоциации между словами существуют.● Частотность и распространённость слов. Модели обучаются на текстах, содержащих миллионы слов и выражений, и узнают, какие из них являются наиболее распространёнными. Например, слова «и», «в», «на» встречаются очень часто и имеют ключевую роль в формировании структуры предложений русского языка.● Синонимы и омонимы. Это позволяет им генерировать разные тексты, сохраняющие общий смысл. Тем не менее, в ходе этой сложной процедуры могут возникать ошибки, когда модель генерирует избыточную информацию или пытается использовать еще не обработанные данные. Устранение таких ошибок и оптимизация вычислений являются неотъемлемой частью Level-2 reasoning, что подчеркивает необходимость совершенствования моделей для достижения более точных и надежных результатов. Языковые модели демонстрируют удивительную способность обучаться структурированным графам причинно-следственных связей, что позволяет решать сложные задачи.